Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities

نویسندگان

  • Giovanni Alessandrini
  • Maarten V. de Hoop
  • Romina Gaburro
چکیده

We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ⊂ Rn when the so-called Neumann-to-Dirichlet map is locally given on a non empty curved portion Σ of the boundary ∂Ω. We prove that anisotropic conductivities that are a-priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the interior from the knowledge of the local Neumann-to-Dirichlet map.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities

We consider the electrostatic inverse boundary value problem also known as electrical impedance tomography (EIT) for the case where the conductivity is a piecewise linear function on a domain Ω ⊂ Rn and we show that a Lipschitz stability estimate for the conductivity in terms of the local Dirichlet-to-Neumann map holds true.

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

Solving Inverse Sturm-Liouville Problems with Transmission Conditions on Two Disjoint Intervals

‎In the present paper‎, ‎some spectral properties of boundary value problems of Sturm-Liouville type on two disjoint bounded intervals with transmission boundary conditions are investigated‎. ‎Uniqueness theorems for the solution of the inverse problem are proved‎, ‎then we study the reconstructing of the coefficients of the Sturm-Liouville problem by the spectrtal mappings method.

متن کامل

Boundary Determination of Conductivities and Riemannian Metrics via Local Dirichlet-to-Neumann Operator

We consider the inverse problem to identify an anisotropic conductivity from the Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the reconstruction formula, we prove Hölder stability, up to isometry, of the inverse problem using a local DtN map.

متن کامل

Inverse Electrostatic and Elasticity Problems for Checkered Distributions

We study the inverse electrostatic and elasticity problems associated with Poisson and Navier equations. These problems arise in a number of applications, such as diagnostic of electronic devices and analysis of residual stresses in materials. In microelectronics, piecewise constant distributions of electric charge having a checkered structure (i.e., that are constant on rectangular blocks) are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016